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In this draft we discuss the solution to the dual variables α1, and α2 of the filter during the training as given in [1]. The
linear system asscoiated in training the first filter is given as follows:

(Φ1ΦT1 + (λ + µ)I)α1 = y − (kI + [kλ + µ(k − 1)](Φ1ΦT1 )
−1

)Φ1ΦT2 α2 (1)

Similarly, the second filter’s dual variables are given as follows:

(Φ2ΦT2 + (λ + µ)I)α2 = y − (kI + [kλ + µ(k − 1)](Φ2ΦT2 )
−1

)Φ2ΦT1 α1 (2)

Note that in [1], b̃ = Φ1ΦT2 α2. Here we show the detailed solution to 1 and infer the solution to the other directly by
mirroring the variables. To solve equation 1, we first introduce a variable c = kλ+µ(k − 1) for ease; therefore, the system to

be solved is as follows:

(Φ1ΦT1 + (λ + µ)I)α1 = y − (kI + c(Φ1ΦT1 )
−1

)Φ1ΦT2 α2 (3)

The solution steps is given below where Φ is a circulant matrix.

(F(diag(â1 ⊙ â∗1)F
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∗
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α̂∗1 =
ŷ∗ − (k + kλ+µ(k−1)

a1⊙â∗1 )⊙ (â1 ⊙ â∗2 ⊙ α̂
∗
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Note that x̂ is the FFT of x, and F is the normalized DFT matrix and all operations are element wise.
By following the same derivation but for equation 2, the solution is given as follows:

α̂2 =

ŷ − (k + kλ+µ(k−1)
a2⊙â∗2 )⊙ (â∗2 ⊙ â1 ⊙ α̂1)

â2 ⊙ â∗2 + λ + µ

Note that the code implemented and available online is for correlation operation not convolution. This will result into
having a symmetric conjugation over all variables. Equivalently, having all circulate matrices to be the

transpose(Hermitian) of the current derivation.
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